Search results for " variational methods"
showing 10 items of 12 documents
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
2016
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems
2017
We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…
Multiplicity results for Sturm-Liouville boundary value problems
2009
Multiplicity results for Sturm-Liouville boundary value problems are obtained. Proofs are based on variational methods.
Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains
1995
Two positive solutions for a nonlinear parameter-depending algebraic system
2021
The existence of two positive solutions for a nonlinear parameter-depending algebraic system is investigated. The main tools are a finite dimensional version of a two critical point theorem and a recent weak-strong discrete maximum principle.
Ordinary (p_1,...,p_m)-Laplacian system with mixed boundary value
2016
In this paper we prove the existence of multiple weak solutions for an ordinary mixed boundary value system with (p_1,...,p_m)-Laplacian by using recent results of critical points.
Triple solutions for nonlinear elliptic problems driven by a non-homogeneous operator
2020
Abstract Some multiplicity results for a parametric nonlinear Dirichlet problem involving a nonhomogeneous differential operator of p -Laplacian type are given. Via variational methods, the article furnishes new contributions and completes some previous results obtained for problems considering other types of differential operators and/or nonlinear terms satisfying different asymptotic conditions.
Infinitely many solutions for a perturbed p-Laplacian boundary value problem with impulsive effects
2017
In this paper, we deal with the existence of weak solutions for a perturbed p-Laplacian boundary value problem with impulsive effects. More precisely, the existence of an exactly determined open interval of positive parameters for which the problem admits infinitely many weak solutions is established. Our proofs are based on variational methods.
An Existence Result for Fractional Kirchhoff-Type Equations
2016
The aim of this paper is to study a class of nonlocal fractional Laplacian equations of Kirchhoff-type. More precisely, by using an appropriate analytical context on fractional Sobolev spaces, we establish the existence of one non-trivial weak solution for nonlocal fractional problems exploiting suitable variational methods.
Two non-zero solutions for Sturm–Liouville equations with mixed boundary conditions
2019
Abstract In this paper, we establish the existence of two non-zero solutions for a mixed boundary value problem with the Sturm–Liouville equation. The approach is based on a recent two critical point theorem.